EMGOLD MINING CORPORATION Suite 1015 – 789 West Pender Street Vancouver, B.C. V6C 1H2 www.emgold.com

May 21, 2019

TSX Venture Exchange : EMR OTC : EGMCF Frankfurt Exchange : EMLN

EMGOLD TO ACQUIRE THE MINDORA GOLD AND BASE METAL PROPERTY, NV WITH HISTORIC NEAR SURFACE DRILL RESULTS INCLUDING 105 FEET (32 METERS) OF 0.098 OPT (3.36 GPT) GOLD EQUIVALENT

Vancouver, British Columbia - Emgold Mining Corporation (TSXV: EMR) ("**Emgold**" or the "**Company**") announces it has signed a Letter of Intent with Nevada Sunrise LLC, a private Nevada company, giving it the right to purchase 12 unpatented mining (the "**NS Claims**"). The Company has also signed a second Letter of Intent with BL Exploration LLC, a second private Nevada company, giving it the right to purchase 18 unpatented mining claims (the "**BL Claims**"). Together, the 30 unpatented mining NS Claims and BL Claims make up the Mindora Property (the "**Property**"). Hole No. 7, shown in Table 1 below, contains 105 ft. (32.0 m) of 0.057 opt (1.94 gpt) gold and 3.552 opt (121.78 gpt) silver, representing a 0.098 opt (3.36 gpt) AuEq grade from a hole depth of 0 to 105 ft. (0 to 32.0 m), with true width of the intercept unknown.

About the Mindora Property

The Property is a gold/silver and base metal property located 20 miles southeast of Hawthorne, Nevada. The gold-silver zone is an epithermal, carbonate-hosted, structurally controlled deposit in the Luning Limestone Formation. The gold-silver zone overlies a porphyry system with molybdenum mineralization. There is also evidence of copper skarn and copper porphyry mineralization on the Property.

The Property was discovered and worked in the late 1800's. In the 1920's with a limited amount of production came from a series of rich, silver-bearing veins. During the period 1946-1948, an estimated 10,000 tons of direct-shipping ore was mined from the Property at unknown grade.

In the 1970's, geologists recognized the epithermal nature of mineralization, and similarities to the nearby Santa Fe deposit and other carbonate-rich sediment-hosted gold deposits in Nevada. Several companies staked the property during this period, did limited sampling and geophysics, and then dropped their claims.

Hawthorne Gold Corporation acquired the property in 1979, and in the following year, brought in E & B Exploration Inc. as a joint-venture partner and operator. E & B completed programs of rock-chip sampling and trench sampling, surface and underground mapping, geophysical surveys, and drilled approximately 31,425 ft. (9,578 m) in 134 holes (including a water-well and two diamond core holes). E & B's work developed four known mineralized zones.

Eureka Resources, Inc. acquired E & B's interest in 1983. Eureka conducted IP, magnetic and VLF electromagnetic surveys, soil and rock-chip sampling and drilled an additional approximately 11,441 ft. (3,487 m) in 40 holes. In 1988, Eureka commissioned metallurgical studies and a detailed review by Kilborn Engineering with the goal of developing a small open pit gold mine. Total drilling on the Property is therefore about 42,836 ft. (13,056 m), mostly in vertical holes in the range of 200-400 ft. (61-122 m), with a maximum drilling depth of 700 ft. (214 m).

Eureka failed to file assessment work on the claims in 2001 and Nevada Sunrise LLC and BL Exploration staked the Property in 2001 and 2003, resulting in the current land package of the NS and BL Claims, respectively. Little exploration work has been done on the property since the last drilling program, completed in 1995.

From the historic data, Emgold has summarized a list of significant gold and silver intercepts, as shown in Table 1. This table contains drill intercepts with grades greater than 0.01 opt (0.34 g/t) AuEq gold grades and lengths greater than 25 ft. (7.6 m). A gold price of \$1,300 per ounce and a silver price of \$15 per ounce were used to calculate gold equivalent grades, at a ratio of 86.7, with no allowance for metallurgical recovery. True widths of intercepts are unknown.

Emgold has also summarized a list of significant molybdenum intercepts, as shown in Table 2. This table contains drill intercepts with greater than 0.01% Mo and lengths greater than 25 ft. (7.6 m). Note that many holes bottomed in molybdenum mineralization. The longest intercept was 295 ft. (90 m) of 0.59% Mo from in drill-hole 162. True widths of intercepts are unknown.

There is little assay information on copper mineralization on the Property. A report titled "Assessment Report on the Mindora Property, Mineral County, Nevada for Eureka Resource Inc." by Myra Schatten, B.C., dated April, 1993, looked at copper mineralization on the Property. The report identified several copper anomalies. It concluded that copper mineralization occurs as skarns along the contact between the intrusives and the limestone and sediments, as replacement zones adjacent to intrusive and limestone sedimentary contacts, and as porphyry mineralization.

The data available on the Property was generated through exploration prior to the implementation of National Instrument NI 43-101. This data is historical in nature and Emgold has not yet completed sufficient work to independently verify these historic results, therefore they should not be relied upon. There is, however, sufficient data available to create a 3-Dimensional model of the historic data to ultimately use as guide future exploration.

Terms of the Nevada Sunrise LLC Transaction

Emgold has agreed to purchase a 100 percent interest in the 12 unpatented mining NS Claims from Nevada Sunrise LLC under the following terms:

- 1. US\$50,000 on closing;
- 2. US\$25,000 per year on the anniversary date of the closing for a period of four years. Total purchase price of US\$150,000.

Terms of the BL Exploration LLC Transaction

Emgold has agreed to purchase a 100 percent interest in 18 unpatented mining BL Claims from BL Exploration LLC for US\$50,000, due at closing. The BL Claims will be subject to a US\$20,000 per year advance royalty. Emgold will assign a 2% NSR royalty to BL Exploration. Emgold will have the option of acquiring one half of the 2% NSR for US\$200,000 on or before the fifth anniversary of the closing of the transaction. Should Emgold not exercise this option, it will have a second option of acquiring ½ of the 2% NSR for US\$500,000 after the fifth anniversary of the closing of the transaction.

Both the Nevada Sunrise LLC and BL Exploration LLC transactions are subject, amongst other conditions, to completion of a definitive agreement and regulatory approval by the TSX Venture Exchange.

Qualified Person

Robert Pease, C.P.G., a qualified person under the NI 43-101 instrument, has reviewed and approved the content of this press release.

Table 1												
Mindora Property												
Significant AuEq Intercepts												
(>0.01 opt AuEq and Lengths > 25 feet or >0.34 gpt AuEq and Lengths > 7.6 meters)												
Hole	From	То	Length	Au	Ag	AuEq	From	То	Length	Au	Ag	AuEq
Number	(feet)	(feet)	(feet)	(opt)	(opt)	(opt)	(meters)	(meters)	(meters)	(gpt)	(gpt)	(gpt)
1	90	135	45	0.035	2.770	0.067	27.4	41.1	13.7	1.200	94.972	2.297
4	0	110	110	0.025	0.650	0.033	0.0	33.5	33.5	0.857	22.286	1.131
5	270	340	70	0.000	0.920	0.011	82.3	103.6	21.3	0.000	31.543	0.377
6	30	55	25	0.000	1.622	0.019	9.1	16.8	7.6	0.000	55.612	0.651
and	360	400	40	0.004	1.021	0.015	109.7	121.9	12.2	0.137	35.006	0.514
7	0	105	105	0.057	3.552	0.098	0.0	32.0	32.0	1.954	121.784	3.360
8	40	105	65	0.031	3.440	0.071	12.2	32.0	19.8	1.063	117.944	2.434
and	130	195	65	0.019	0.748	0.028	39.6	59.4	19.8	0.651	25.646	0.960
9	70	200	130	0.032	1.876	0.053	21.3	61.0	39.6	1.097	64.321	1.817
10	155	255	100	0.014	1.642	0.033	47.2	77.7	30.5	0.480	56.298	1.131
11	100	215	115	0.098	1.738	0.058	30.5	65.5	35.1	3.360	59.589	1.989
13	85	145	60	0.017	1.913	0.039	25.9	44.2	18.3	0.583	65.589	1.337
14	5	30	25	0.011	2.076	0.035	1.5	9.1	7.6	0.377	71.178	1.200
16	5	95	90	0.014	0.642	0.021	1.5	29.0	27.4	0.480	22.012	0.720
18	155	200	45	0.036	2.853	0.068	47.2	61.0	13.7	1.234	97.818	2.331
19	60	95	35	0.058	0.923	0.069	18.3	29.0	10.7	1.989	31.646	2.366
21	200	235	35	0.011	0.147	0.013	61.0	71.6	10.7	0.377	5.040	0.446
22	100	165	65	0.010	0.262	0.013	30.5	50.3	19.8	0.343	8.983	0.446
and	200	290	90	0.026	0.921	0.037	61.0	88.4	27.4	0.891	31.577	1.269
25	70	95	25	0.023	1.394	0.039	21.3	29.0	7.6	0.789	47.795	1.337
27	25	135	110	0.037	5.071	0.096	7.6	41.1	33.5	1.269	173.864	3.291
and	245 60	275 170	30	0.037 0.021	0.472 0.653	0.043	74.7	83.8	9.1	1.269 0.720	16.183	1.474
30 32	105	170	110 25	0.021	0.653	0.029	18.3 32.0	51.8 39.6	33.5 7.6	0.720	22.389 16.389	0.994 0.549
	105	205	40	0.010	0.478	0.018	50.3	62.5	12.2	0.543	12.960	0.549
and 34	85	110	40 25	0.017	0.378	0.021	25.9	33.5	7.6	0.585	9.189	0.720
34	5	85	80	0.020	0.208	0.023	1.5	25.9	24.4	0.377	29.589	0.686
33	30	185	155	0.011	0.508	0.020	9.1	56.4	47.2	0.789	17.417	0.960
41	150	305	155	0.023	0.508	0.028	45.7	93.0	47.2	0.686	22.423	0.960
42	5	140	135	0.028	1.658	0.047	1.5	42.7	41.1	0.960	56.846	1.611
43	120	150	30	0.019	1.033	0.030	36.6	45.7	9.1	0.651	35.075	1.011
45A	0	40	40	0.031	3.900	0.076	0.0	12.2	12.2	1.063	133.715	2.606
46	75	155	80	0.031	1.979	0.038	22.9	47.2	24.4	0.549	67.852	1.303
40	,9	35	35	0.010	3.840	0.088	0.0	10.7	10.7	1.474	131.658	3.017
48	20	70	50	0.028	4.916	0.085	6.1	21.3	15.2	0.960	168.550	2.914
48A	25	130	105	0.19	4.023	0.066	7.6	39.6	32.0	6.514	137.933	2.263
49	130	155	25	0.039	0.966	0.050	39.6	47.2	7.6	1.337	33.120	1.714
and	225	255	30	0.004	2.201	0.029	68.6	77.7	9.1	0.137	75.463	0.994
and	300	365	65	0.002	1.806	0.023	91.4	111.3	19.8	0.069	61.921	0.789
50	255	280	25	0.022	0.228	0.026	77.7	85.3	7.6	0.754	7.817	0.891

Table 1 (Continued)												
Mindora Property												
Significant AuEq Intercepts												
(>0.01 opt AuEq and Lengths > 25 feet or >0.34 gpt AuEq and Lengths > 7.6 meters)												
Hole	From	То	Length	Au	Ag	AuEq	From	То	Length	Au	Ag	AuEq
Number	(feet)	(feet)	(feet)	Opt	Opt	Opt	(meters)	(meters)	(meters)	(gpt)	(gpt)	(gpt)
51	120	150	30	0.033	1.803	0.053	36.6	45.7	9.1	1.131	61.818	1.817
52	5	55	50	0.015	0.745	0.024	1.5	16.8	15.2	0.514	25.543	0.823
53	190	260	70	0.020	1.213	0.034	57.9	79.2	21.3	0.686	41.589	1.166
55	120	195	75	0.021	1.239	0.036	36.6	59.4	22.9	0.720	42.480	1.234
55A	80	155	75	0.014	0.066	0.022	24.4	47.2	22.9	0.480	2.253	0.754
55B	80	180	100	0.022	1.030	0.034	24.4	54.9	30.5	0.754	35.315	1.166
57	200	290	90	0.009	0.333	0.013	61.0	88.4	27.4	0.309	11.417	0.446
58	205	230	25	0.008	0.678	0.016	62.5	70.1	7.6	0.274	23.246	0.549
60	35	120	85	0.064	3.058	0.100	10.7	36.6	25.9	2.194	104.847	3.429
61	40	105	65	0.051	2.335	0.078	12.2	32.0	19.8	1.749	80.058	2.674
63	90	120	30	0.033	5.312	0.094	27.4	36.6	9.1	1.131	182.127	3.223
68	115	160	45	0.013	1.568	0.032	35.1	48.8	13.7	0.446	53.760	1.097
71	75	205	130	0.021	0.413	0.026	22.9	62.5	39.6	0.720	14.160	0.891
73	40	80	40	0.009	0.473	0.015	12.2	24.4	12.2	0.309	16.217	0.514
and	115	140	25	0.013	0.310	0.017	35.1	42.7	7.6	0.446	10.629	0.583
75	30	80	50	0.020	0.473	0.025	9.1	24.4	15.2	0.686	16.217	0.857
83	105	135	30	0.008	0.533	0.014	32.0	41.1	9.1	0.274	18.274	0.480
and	235	265	30	0.006	0.607	0.013	71.6	80.8	9.1	0.206	20.812	0.446
87	235	265	30	0.081	No Data	0.081	71.6	80.8	9.1	2.777	No Data	2.777
93	40	65	25	0.044	3.702	0.086	12.2	19.8	7.6	1.509	126.927	2.949
95	55	125	70	0.030	1.558	0.048	16.8	38.1	21.3	1.029	53.418	1.646
97	90	140	50	0.016	2.475	0.044	27.4	42.7	15.2	0.549	84.858	1.509
99	20	60	40	0.063	2.824	0.095	6.1	18.3	12.2	2.160	96.824	3.257
100	90	150	60	0.026	2.267	0.052	27.4	45.7	18.3	0.891	77.726	1.783
102	0	30	30	0.007	0.995	0.019	0.0	9.1	9.1	0.240	34.115	0.651
106	90	135	45	0.027	1.977	0.049	27.4	41.1	13.7	0.926	67.783	1.680
and	200	250	50	0.035	1.456	0.052	61.0	76.2	15.2	1.200	49.920	1.783
107	75	125	50	0.027	4.587	0.080	22.9	38.1	15.2	0.926	157.270	2.743
and	145	170	25	0.034	2.064	0.058	44.2	51.8	7.6	1.166	70.766	1.989
108	105	150	45	0.039	1.567	0.057	32.0	45.7	13.7	1.337	53.726	1.954
109	25	50	25	0.086	0.360	0.009	7.6	15.2	7.6	2.949	12.343	0.309
113A	200	250	50	0.017	0.243	0.019	61.0	76.2	15.2	0.583	8.331	0.651
114	20	60	40	0.043	2.118	0.067	6.1	18.3	12.2	1.474	72.618	2.297
117	60	90	30	0.070	0.134	0.071	18.3	27.4	9.1	2.400	4.594	2.434
120	15	85	70	0.010	0.261	0.013	4.6	25.9	21.3	0.343	8.949	0.446
121	5	30	25	0.019	0.263	0.022	1.5	9.1	7.6	0.651	9.017	0.754
124	60	135	75	0.013	0.311	0.017	18.3	41.1	22.9	0.446	10.663	0.583
131	35	75	40	0.011	0.396	0.016	10.7	22.9	12.2	0.377	13.577	0.549
132	140	230	90	0.024	0.180	0.026	42.7	70.1	27.4	0.823	6.171	0.891
134	145	170	25	0.009	9.218	0.116	44.2	51.8	7.6	0.309	316.048	3.977
137	185	225	40	0.011	0.306	0.014	56.4	68.6	12.2	0.377	10.492	0.480
and	255	325	70	0.040	1.394	0.056	77.7	99.1	21.3	1.371	47.795	1.920
142	85	110	25	0.055	0.570	0.062	25.9	33.5	7.6	1.886	19.543	2.126
146	190	280	90	0.012	0.583	0.019	57.9	85.3	27.4	0.411	19.989	0.651
162	435	470	35	0.040	0.243	0.043	132.6	143.3	10.7	1.371	8.331	1.474

Table 2													
Mindora Property													
Significant Molybdenum Intercepts													
(>0.01% MO and Lengths > 25 feet or 0.01% MO and Lengths > 7.6 meters)													
Hole	From	То	Length	From	From	From	Mo%	Note					
Number	(feet)	(feet)	(feet)	(meters)	(meters)	(meters)							
M-80-6	205	400	195	62.5	121.9	59.4	0.039	BOH					
M-80-7	25	55	30	7.6	16.8	9.1	0.124						
M-80-8	70	95	25	21.3	29.0	7.6	0.020						
and	125	150	25	38.1	45.7	7.6	0.066						
M-80-9	115	165	50	35.1	50.3	15.2	0.016						
M-80-10	150	245	95	45.7	74.7	29.0	0.033						
M-80-11	85	225	140	25.9	68.6	42.7	0.036	BOH					
M-80-13	85	200	115	25.9	61.0	35.1	0.074	BOH					
M-80-17	105	205	100	32.0	62.5	30.5	0.014	BOH					
M-80-18	95	200	105	29.0	61.0	32.0	0.029	BOH					
M-80-19	60	115	55	18.3	35.1	16.8	0.021						
M-80-22	150	230	80	45.7	70.1	24.4	0.024						
M-80-23	155	190	35	47.2	57.9	10.7	0.020						
and	270	300	30	82.3	91.4	9.1	0.022						
M-80-26	195	320	125	59.4	97.5	38.1	0.013	BOH					
M-80-27	35	65	30	10.7	19.8	9.1	0.027						
and	95	125	30	29.0	38.1	9.1	0.044						
M-80-28	175	310	135	53.3	94.5	41.1	0.031	BOH					
M-80-29	125	275	150	38.1	83.8	45.7	0.064	BOH					
M-80-30	80	170	90	24.4	51.8	27.4	0.026						
M-80-31	175	205	30	53.3	62.5	9.1	0.030	BOH					
M-80-32	170	215	45	51.8	65.5	13.7	0.031	BOH					
M-80-34	140	205	65	42.7	62.5	19.8	0.131						
M-80-35	40	75	35	12.2	22.9	10.7	0.017						
M-80-40	230	400	170	70.1	121.9	51.8	0.069	BOH					
M-81-41	125	340	215	38.1	103.6	65.5	0.029						
M-81-42	80	155	75	24.4	47.2	22.9	0.090						
M-81-43	110	200	90	33.5	61.0	27.4	0.030						
M-81-45	295	500	205	89.9	152.4	62.5	0.029	BOH					
M-81-46	95	200	105	29.0	61.0	32.0	0.023	BOH					
M-81-49	110	235	125	33.5	71.6	38.1	0.040						
and	335	485	150	102.1	147.8	45.7	0.043						
* BOH = bottom of hole													

Table 2 (continued)													
Mindora Property													
Significant Molybdenum Intercepts													
(>0.01% MO and Lengths > 25 feet or 0.01% MO and Lengths > 7.6 meters)													
Hole	From To		Length	From	From	From	Mo%	Note*					
Number	(feet)	(feet)	(feet)	(meters)	(meters)	(meters)							
M-81-50	175	265	90	53.3	80.8	27.4	0.032						
M-81-51	135	200	65	41.1	61.0	19.8	0.026						
M-81-53	110	200	90	33.5	61.0	27.4	0.022						
M-81-54	90	170	80	27.4	51.8	24.4	0.076						
M-81-55	90	205	115	27.4	62.5	35.1	0.043	BOH					
M-81-55A	90	190	100	27.4	57.9	30.5	0.065	BOH					
M-81-55B	85	190	105	25.9	57.9	32.0	0.064						
and	280	400	120	85.3	121.9	36.6	0.030	BOH					
M-81-56	150	385	235	45.7	117.3	71.6	0.031						
	430	485	55	131.1	147.8	16.8	0.012						
M-81-57	150	310	160	45.7	94.5	48.8	0.038						
M-81-62	190	285	95	57.9	86.9	29.0	0.022	BOH					
M-81-63	270	300	30	82.3	91.4	9.1	0.035	BOH					
M-81-64	110	200	90	33.5	61.0	27.4	0.027	BOH					
M-81-65	70	260	190	21.3	79.2	57.9	0.016						
and	300	365	65	91.4	111.3	19.8	0.019						
and	420	500	80	128.0	152.4	24.4	0.019	BOH					
M-81-67	100	140	40	30.5	42.7	12.2	0.095	BOH					
M-81-68	85	195	110	25.9	59.4	33.5	0.070	BOH					
M-83-79	145	200	55	44.2	61.0	16.8	0.018						
M-83-89	325	405	80	99.1	123.4	24.4	0.100	BOH					
M-83-101	155	180	25	47.2	54.9	7.6	0.110						
M-83-104	355	405	50	108.2	123.4	15.2	0.130	BOH					
M-83-109	225	255	30	68.6	77.7	9.1	0.025						
M-95-153	285	500	215	86.9	152.4	65.5	0.040	BOH					
M-95-154	255	405	150	77.7	123.4	45.7	0.040						
M-95-162	175	470	295	53.3	143.3	89.9	0.059						
BOH = bottom of hole													

About Emgold

Emgold is a junior gold exploration company focused on Nevada and Quebec. The Company's strategy is to look for asset acquisitions and divestitures, joint ventures, option, royalty, and other business opportunities to advance the Company and create value for our shareholders. Our properties include the Golden Arrow, Buckskin Rawhide East, Buckskin Rawhide West, and Koegel Rawhide Properties in Nevada and an option to acquire up to a 91% interest in the Casa South Property in Quebec, adjacent to Hecla Mining Corporation's operating Casa Berardi Mine. The Company has a strategic investment of 3.75 million shares of Troilus Gold Corporation (**TSX: TLG**) which is advancing the Troilus Gold Project in Quebec. For more information on the Company, investors should review the Company's filings that are available at www.sedar.com or the Company's website at www.emgold.com.

On behalf of the Board of Directors David G. Watkinson, P.Eng. President & CEO

For further information, please contact:

David G. Watkinson, P.Eng. Tel: 530-271-0679 Ext 101 Email: info@emgold.com

Neither TSX Venture Exchange nor its Regulation Services Provider (as the term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Cautionary Note on Forward-Looking Statements

This news release contains forward-looking statements and forward-looking information (collectively, "forward-looking statements") within the meaning of applicable Canadian and U.S. securities legislation, including the United States *Private Securities Litigation Reform Act* of 1995. All statements, other than statements of historical fact, included herein including, without limitation, statements regarding the anticipated results from exploration activities, the discovery and delineation of mineral deposits/resources/reserves and the anticipated business plans and timing of future activities of the Company, are forward-looking statements. Although the Company believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: "believe", "expect", "anticipate", "intend", "estimate", "postulate" and similar expressions, or are those, which, by their nature, refer to future events.

The Company cautions investors that any forward-looking statements made by the Company are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including potential acquisition of the Mindora Property, further exploration, development, or mining activities on the Mindora, Property, or its other Properties, operating and technical difficulties in connection with mineral exploration and development activities, the estimation or realization of mineral reserves and mineral resources, the timing and amount of estimated future production, the costs of production, capital expenditures, the costs and timing of the development of new deposits, requirements for additional capital, future prices of precious metals, changes in general economic conditions, changes in the financial markets and in the demand and market price for commodities, labour disputes and other risks of the mining industry, delays in obtaining governmental approvals, permits or financing or in the completion of development or construction activities, changes in laws, regulations and policies affecting mining operations, title disputes, the inability of the Company to obtain any necessary permits, consents or authorizations required, including TSX Venture Exchange acceptance of any other current or future property acquisitions or financings and other planned activities, the timing and possible outcome of any pending litigation, environmental issues and liabilities, and risks related to joint venture operations, and other risks and uncertainties disclosed in the Company's latest interim Management's Discussion and Analysis and filed with certain securities commissions in Canada. The Company's Canadian public disclosure filings may be accessed via www.sedar.com and readers are urged to review these materials, including the technical reports filed with respect to the Company's mineral properties.

The Company does not undertake to update any forward-looking information provided in this press release or Management's Discussion and Analysis, except as, and to the extent required by, applicable securities laws. For more information on the Company and its business, investors should review the Company's annual information form and other regulatory filings filed with securities commissions or similar authorities in Canada that are available on SEDAR at www.sedar.com. The Company reviews its forward-looking statements on an ongoing basis and updates this information when circumstances require it.

Readers are cautioned not to place undue reliance on forward-looking statements. The Company undertakes no obligation to update any of the forward-looking statements in this news release or incorporated by reference herein, except as otherwise required by law.